Khái Niệm Cơ Bản Về Khuếch Đại Thuật Toán ( Operational Amplifier )

June

Kỹ sư
#1
Mạch khuếch đại thuật toán (Operational Amplifier: Op-Amps) có ký hiệu như hình sau:
Đây là một vi mạch tương tự rất thông dụng do trong Op-Amps được tích hợp một số ưu điểm sau:
- Hai ngõ vào đảo và không đảo cho phép Op-Amps khuếch đại được nguồn tín hiệu có tính đối xứng (các nguồn phát tín hiệu biến thiên chậm như nhiệt độ, ánh sáng, độ ẩm, mực chất lỏng, phản ứng hoá-điện, dòng điện sinh học ... thường là nguồn có tính đối xứng)
- Ngõ ra chỉ khuếch đại sự sai lệch giữa hai tín hiệu ngõ vào nên Op-Amps có độ miễn nhiễu rất cao vì khi tín hiệu nhiễu đến hai ngõ vào cùng lúc sẽ không thể xuất hiện ở ngõ ra. Cũng vì lý do này Op-Amps có khả năng khuếch đại tín hiệu có tần số rất thấp, xem như tín hiệu một chiều.
- Hệ số khuếch đại của Op-Amps rất lớn do đó cho phép Op-Amps khuếch đại cả những tín hiệu với biên độ chỉ vài chục mico Volt.
- Do các mạch khuếch đại vi sai trong Op-Amps được chế tạo trên cùng một phiến do đó độ ổn định nhiệt rất cao.
- Điện áp phân cực ngõ vào và ngõ ra bằng không khi không có tín hiệu, do đó dễ dàng trong việc chuẩn hoá khi lắp ghép giữa các khối (module hoá).
- Tổng trở ngõ vào của Op-Amps rất lớn, cho phép mạch khuếch đại những nguồn tín hiệu có công suất bé.
- Tổng trở ngõ ra thấp, cho phép Op-Amps cung cấp dòng tốt cho phụ tải.
- Băng thông rất rộng, cho phép Op-Amps làm việc tốt với nhiều dạng nguồn tín hiệu khác nhau
. . .
Tuy nhiên cũng như các vi mạch khác, Op-Amps không thể làm việc ổn định khi làm việc với tần số và công suất cao.
Sơ đồ chân và hình dạng một op-amps điển hình
2. Op-Amps lý tưởng - Op-Amps thực tế
Để đơn giản trong việc tính toán trên op-amps, có thể tính toán trên op-amps lý tưởng sau đó thực hiện bổ chính các thông số trong mạch. Để có được một cái nhìn tổng quan giữa op-amps thực tế và op-amps lý tưởng, có thể so sánh một vài thông số giữa op-amps lý tưởng và op-amp thông dụng (general purpose) như bảng sau
(*) Trên thực tế có những op-amps được chế tạo với mục đích chuyên dụng (trong kỹ thuật hàng không vũ trụ, quân sự, y tế, công nghiệp ...), các đặc tính của nó rất gần với đặc tính của op-amps lý tưởng. Ở đây chỉ so sánh với loại phổ dụng giá thành thấp ® chất lượng cũng không cao.
3. Hệ số nén tín hiệu kiểu chung (CMRR: Common Mode Rejection Ratio)
Do op-amps có ngõ vào là mạch khuếch đại vi sai nên có một chỉ số rất quan trọng khi đánh giá chất lượng của mạch khuếch đại vi sai cũng dùng được cho op-amps: đó là hệ số CMRR. Giá trị CMRR càng cao mạch có tính triệt nhiễu đồng pha càng tốt. Thông số này được định nghĩa như sau:

Với Avd là hệ số khuếch đại vi sai và AvCM à hệ số khuếch đại common mode.
Kết hợp với các công thức khi tính trong mạch khuếch đại vi sai, ta có:

Từ công thức này ta thấy: RE càng lớn càng tốt cho việc triệt nhiễu đồng pha nhưng làm như vậy lại làm giảm hệ số khuếch đại áp của mạch. Do đó để được lợi đôi đường người ta sử dụng nguồn dòng thay thế cho RE.
 

June

Kỹ sư
#2
Cấu tạo
Op-Amps lý tưởng có cấu tạo như hình vẽ
- Khối 1: Đây là tầng khuếch đại vi sai (Differential Amplifier), nhiệm vụ khuếch đại độ sai lệch tín hiệu giữa hai ngõ vào v+ và v-. Nó hội đủ các ưu điểm của mạch khuếch đại vi sai như: độ miễn nhiễu cao; khuếch đại được tín hiệu biến thiên chậm; tổng trở ngõ vào lớn ...
- Khối 2: Tầng khuếch đại trung gian, bao gồm nhiều tầng khuếch đại vi sai mắc nối tiếp nhau tạo nên một mạch khuếch đại có hệ số khuếch đại rất lớn, nhằm tăng độ nhay cho Op-Amps. Trong tẩng này còn có tầng dịch mức DC để đặt mức phân cực DC ở ngõ ra.
- Khối 3: Đây là tầng khuếch đại đệm, tần này nhằm tăng dòng cung cấp ra tải, giảm tổng trở ngõ ra giúp Op-Amps phối hợp dễ dàng với nhiều dạng tải khác nhau.
Op-Amps thực tế vẫn có một số khác biệt so với Op-Amps lý tưởng. Nhưng để dễ dàng trong việc tính toán trên Op-Amps người ta thường tính trên Op-Amps lý tưởng, sau đó dùng các biện pháp bổ chính (bù) giúp Op-Amps thực tế tiệm cận với Op-Amps lý tưởng. Do đó để thuận tiện cho việc trình bày nội dung trong chương này có thể hiểu Op-Amps nói chung là Op-Amps lý tưởng sau đó sẽ thực hiện việc bổ chính sau.
2. Nguyên lý làm việc
Dựa vào ký hiệu của Op-Amps ta có đáp ứng tín hiệu ngõ ra Vo theo các cách đưa tín hiệu ngõ vào như sau:
- Đưa tín hiệu vào ngõ vào đảo, ngõ vào không đảo nối mass: Vout = Av0.V+
- Đưa tín hiệu vào ngõ vào không đảo, ngõ vào đảo nối mass: Vout = Av0.V-
- Đưa tín hiệu vào đổng thời trên hai ngõ vào (tín hiệu vào vi sai so với mass): Vout = Av0.(V+-V-) = Av0.(ΔVin)
Để việc khảo sát mang tính tổng quan, xét trường hợp tín hiệu vào vi sai so với mass (lúc này chỉ cần cho một trong hai ngõ vào nối mass ta sẽ có hai trường hợp kia). Op-Amps có đặc tính truyền đạt như hình sau
Trên đặc tính thể hiện rõ 3 vùng:
- Vùng khuếch đại tuyến tính: trong vùng này điện áp ngõ ra Vo tỉ lệ với tín hiệu ngõ vào theo quan hệ tuyến tính. Nếu sử dụng mạch khuếch đại điện áp vòng hở (Open Loop) thì vùng này chỉ nằm trong một khoảng rất bé.
- Vùng bão hoà dương: bất chấp tín hiệu ngõ vào ngõ ra luôn ở +Vcc.
- Vùng bão hoà âm: bất chấp tín hiệu ngõ vào ngõ ra luôn ở -Vcc.
Trong thực tế, người ta rất ít khi sử dụng Op-Amps làm việc ở trạng thái vòng hở vì tuy hệ số khuếch đại áp Av0 rất lớn nhưng tầm điện áp ngõ vào mà Op-Amps khuếch đại tuyến tính là quá bé (khoảng vài chục đến vài trăm micro Volt). Chỉ cần một tín hiệu nhiễu nhỏ hay bị trôi theo nhiệt độ cũng đủ làm điện áp ngõ ra ở ±Vcc. Do đó mạch khuếch đại vòng hở thường chỉ dùng trong các mạch tạo xung, dao động. Muốn làm việc ở chế độ khuếch đại tuyến tính người ta phải thực hiện việc phản hồi âm nhằm giảm hệ số khuếch đại vòng hở Av0 xuống một mức thích hợp. Lúc này vùng làm việc tuyến tính của Op-Amps sẽ rộng ra, Op-Amps làm việc trong chế độ này gọi là trạng thái vòng kín (Close Loop).
3. Nguồn cung cấp
Op-Amps không phải lúc nào cũng đòi hỏi phải cung cấp một nguồn ổn áp đối xứng ±15VDC, nó có thể làm việc với một nguồn không đối xứng có giá trị thấp hơn (ví dụ như +12VDC và -3VDC) hay thậm chí với một nguồn đơn +12VDC. Tuy nhiên việc thay đổi về cấu trúc nguồn cung cấp cũng làm thay đổi một số tính chất ảnh hưởng đến tính đối xứng của nguồn như Op-amps sẽ không lấy điện áp tham chiếu (reference) là mass mà chọn như hình sau:
Mặc dù nguồn đơn có ưu điểm là đơn giản trong việc cung cấp nguồn cho op-amps nhưng trên thực tế rất nhiều mạch op-amps được sử dụng nguồn đôi đối xứng.
4. Phân cực cho op-amps làm việc với tín hiệu ac
Cũng như mạch khuếch đại nối tầng RC, các op-amps dùng trong khuếch đại tín hiệu ac cần có tụ liên lạc để tránh ảnh hưởng của thành phần dc giữa các tầng khuếch đại. Dưới đây là sơ đồ một mạch khuếch đại âm tần có độ lợi 40dB Sử dụng nguồn đơn.
5. Mạch so sánh và Schmitt Trigger
Hai dạng mạch này có một điểm chung là được phân cực để làm việc ở vùng bão hoà. Tuy nhiên giữa chúng vẫn có những điểm khác biệt.
a. Mạch so sánh
Mạch so sánh tận dụng tối đa hệ số khuếch đại vòng hở trong op-amps (tối thiểu khoảng 100 000 lần) và được chế tạo thành những vi mạch chuyên dụng (comparators) như LM339, LM306, LM311, LM393, NE527, TLC372 ... Các VI MẠCH NÀY ĐƯỢC THIẾT KẾ ĐỂ ĐÁP ỨNG RẤT NHANH THEO SỰ THAY ĐỔI CỦA TÍN HIỆU VÀO (Slew rate khoảng vài ngàn volt/microsecond). Tuy nhiên với đáp ứng cực nhanh như vậy đôi lúc dẫn đến những phiền toái, ví dụ trong mạch điện sau
Rõ ràng tín hiệu ngõ ra bị dao động mỗi khi chuyển trạng thái, điều này rất nguy hiểm cho các mạch phía sau. Để khắc phụ nhược điểm trên người ta sử dụng mạch Schmitt Trigger.
b. Mạch Schmitt Trigger
Mạch Schmitt Trigger là mạch so sánh có phản hồi như hình sau
Lúc này do vin so sánh với tín hiệu ngõ vào v+ là điện thế trên mạch phân áp R4-R2, nên theo sự biến thiên giữa hai mức điện áp của vout, mạch Schmitt Trigger cũng có hai ngưỡng so sánh là VH và VL.
Qua hình trên ta nhận thấy, mạch Schmitt Trigger là mạch so sánh vin theo hai ngưỡng VH và VL. Khi điện áp vin vượt qua VH thì giá trị của vout là 0V và khi vin thấp hơn VL thì vout sẽ ở +Vcc (nghĩa là có sự đảo pha). Để minh hoạ trực quan cho dạng mạch này người ta thường sử dụng ký hiệu
Mạch Schmitt Trigger còn có một dạng ký hiệu khác ngược chiều với ký hiệu trên khi ta thay đổi cực tính ngõ vào vin, lúc này vin và vout sẽ đồng pha.
 

vietanh93

Học sinh phổ thông
#3
Mấy a cho em hỏi trong 1 sô mạch thường sử dụng nguồn đối xứng Ví dụ +-5v vậy e thay 1 nguồn đối xứng thành 1 nguồn thường với GND và +10v được ko
 

BuiBachTuanAnh

Quản trị viên
Thành viên BQT
#6
Mấy a cho em hỏi trong 1 sô mạch thường sử dụng nguồn đối xứng Ví dụ +-5v vậy e thay 1 nguồn đối xứng thành 1 nguồn thường với GND và +10v được ko
Bạn hiểu thế này nhé!
KĐTT làm việc trong dải nguồn nuôi cho nó, giới hạn dưới và giới hạn trên là hai ngưỡng bão hòa của tín hiệu đầu ra KĐTT. Nên ngưỡng dưới và trên bạn có thể đặt bất kỳ, quan trọng là Giới hạn trên - Giới hạn dưới <= giá trị cho phép ( giá trị này trong datasheet của mỗi KĐTT đều ghi cả). Trong thực tế với các mạch xử lý tín hiệu thường mắc nguồn đối xứng để dễ gia công tín hiệu và phù hợp với các mạch mắc trước và sau của nó.
 

vietanh93

Học sinh phổ thông
#7
Bạn hiểu thế này nhé!
KĐTT làm việc trong dải nguồn nuôi cho nó, giới hạn dưới và giới hạn trên là hai ngưỡng bão hòa của tín hiệu đầu ra KĐTT. Nên ngưỡng dưới và trên bạn có thể đặt bất kỳ, quan trọng là Giới hạn trên - Giới hạn dưới <= giá trị cho phép ( giá trị này trong datasheet của mỗi KĐTT đều ghi cả). Trong thực tế với các mạch xử lý tín hiệu thường mắc nguồn đối xứng để dễ gia công tín hiệu và phù hợp với các mạch mắc trước và sau của nó.
1 mạch nguyên lý có 3 điểm điện thế : +30v GND và -30v
như vậy mình có thể cấp cho
đầu +30v bằng 1 điện thế 60v
đầu GND bằng 1 điện thế 30v
đầu -30v bằng 1 điện thế 0v ( GND nối đất)
phải ko bạn??????
à cho mình hỏi gia công tín hiệu là như thế nào, mình chỉ biết cấp tín hiệu cho mạch bằng máy phát xung và hiệu chỉnh nó bằng bằng các cái núm vặn ( biến trở)
mạch mắc trước mạch mắc sau ? mình không biết tí gì bạn ạ ! phiền bạn giải thích giúp mình với hì hì
 
Sửa lần cuối:

aivayta92

Học sinh phổ thông
#8
a ơi, cho em hỏi vs, cái Kp, Ko, Ku trong mach tỉ lệ quan hệ ntn ạ, e vẫn chưa hiểu rõ lắm ạ, mong bác giúp đỡ.
 

sunbin

Sinh viên đại học
#9
mấy bác cho mình hỏi mạch trừ opamp
1 chân là sóng sin 3v chân còn lại là điện áp DC 5v opamp nó có trừ được không vây
 

Quảng cáo Google